一二中文

最近更新
字:
关灯 护眼
一二中文 > 上帝掷骰子吗 > 第1章 第一章 黄金时代

第1章 第一章 黄金时代

《上帝掷骰子吗》

一二小说www.12xs.com,最有站,提供经典的文学名著、武侠小说、言情小说、人文社科类书籍在线阅读,所有TXT电子书手机免费下载阅读,我们提供给您的小说不求最多,但求最经典最完整

目录

第一章黄金时代

第二章乌云

第三章火流星

第四章白云深处

第五章曙光

第六章大一统

第七章不确定性

第八章论战

第九章测量问题

第十章不等式

第十一章上帝的判决

第十二章新探险

尾声后记

如果要评选物理学发展史上最伟大的那些年代,那么有两个时期是一定会入选的:17世纪末和20世纪初。前者以牛顿《自然哲学之数学原理》的出版为标志,宣告了现代经典物理学的正式创立;而后者则为我们带来了相对论和量子论,并最彻底地推翻和重建了整个物理学体系。所不同的是,今天当我们再谈论起牛顿的时代,心中更多的已经只是对那段光辉岁月的怀旧和祭奠;而相对论和量子论却仍然深深地影响和困扰着我们至今,就像两颗青涩的橄榄,嚼得越久,反而更加滋味无穷。

我在这里先要给大家讲的是量子论的故事。这个故事更像一个传奇,由一个不起眼的线索开始,曲径通幽,渐渐地落英缤纷,乱花迷眼。正在没个头绪处,突然间峰回路转,天地开阔,如河出伏流,一泄汪洋。然而还未来得及一览美景,转眼又大起大落,误入白云深处不知归路……量子力学的发展史是物理学上最激动人心的篇章之一,我们会看到物理大厦在狂风暴雨下轰然坍塌,却又在熊熊烈焰中得到了洗礼和重生。我们会看到最革命的思潮席卷大地,带来了让人惊骇的电闪雷鸣,同时却又展现出震撼人心的美丽。我们会看到科学如何在荆棘和沼泽中艰难地走来,却更加坚定了对胜利的信念。

量子理论是一个复杂而又难解的谜题。她像一个神秘的少女,我们天天与她相见,却始终无法猜透她的内心世界。今天,我们的现代文明,从电脑,电视,手机到核能,航天,生物技术,几乎没有哪个领域不依赖于量子论。但量子论究竟带给了我们什么?这个问题至今却依然难以回答。在自然哲学观上,量子论带给了我们前所未有的冲击和震动,甚至改变了整个物理世界的基本思想。它的观念是如此地革命,乃至最不保守的科学家都在潜意识里对它怀有深深的惧意。现代文明的繁盛是理性的胜利,而量子论无疑是理性的最高成就之一。但是它被赋予的力量太过强大,以致有史以来第一次,我们的理性在胜利中同时埋下了能够毁灭它自身的种子。以致量子论的奠基人之一玻尔(nielsbohr)都要说:“如果谁不为量子论而感到困惑,那他就是没有理解量子论。”

掐指算来,量子论创立至今已经超过100年,但它的一些基本思想却仍然不为普通的大众所熟知。那么,就让我们再次回到那个伟大的年代,再次回顾一下那场史诗般壮丽的革命,再次去穿行于那惊涛骇浪之间,领略一下晕眩的感觉吧。我们的快艇就要出发,当你感到恐惧或者震惊时,请务必抓紧舷边。但大家也要时刻记住,当年,物理史上最伟大的天才们也走过同样的航线,而他们的感觉,和我们是一模一样的。

第一章黄金时代

我们的故事要从1887年的德国开始。位于莱茵河边的卡尔斯鲁厄是一座风景秀丽的城市,在它的城中心,矗立着著名的18世纪的宫殿。郁郁葱葱的森林和温暖的气候也使得这座小城成为了欧洲的一个旅游名胜。然而这些怡人的景色似乎没有分散海因里希·鲁道夫·赫兹(heinrich

rudolfhertz)的注意力:现在他正在卡尔斯鲁厄大学的一间实验室里专心致志地摆弄他的仪器。那时候,赫兹刚刚30岁,也许不会想到他将在科学史上成为和他的老师赫耳姆霍兹(hermannvonhelmholtz)一样鼎鼎有名的人物,不会想到他将和卡尔·本茨(carlbenz)一样成为这个小城的骄傲。现在他的心思,只是完完全全地倾注在他的那套装置上。

赫兹的装置在今天看来是很简单的:它的主要部分是一个电火花发生器,有两个相隔很近的小铜球作为电容。赫兹全神贯注地注视着这两个相对而视的铜球,然后合上了电路开关。顿时,电的魔力开始在这个简单的系统里展现出来:无形的电流穿过装置里的感应线圈,并开始对铜球电容进行充电。赫兹冷冷地注视着他的装置,在心里面想象着电容两段电压不断上升的情形。在电学的领域攻读了那么久,赫兹对自己的知识是有充分信心的,他知道,随着电压的上升,很快两个小球之间的空气就会被击穿,然后整个系统就会形成一个高频的振荡回路(lc回路),但是,他现在想要观察的不是这个。

果然,过了一会儿,随着细微的“啪”的一声,一束美丽的蓝色电花爆开在两个铜球之间,整个系统形成了一个完整的回路,细小的电流束在空气中不停地扭动,绽放出幽幽的荧光。

赫兹反而更加紧张了,他盯着那串电火花,还有电火花旁边的空气,心里面想象了一幅又一幅的图景。他不是要看这个装置如何产生火花短路,他这个实验的目的,是为了求证那虚无飘渺的“电磁波”的存在。那是一种什么样的东西啊,它看不见,摸不着,到那时为止谁也没有见过,验证过它的存在。可是,赫兹是坚信它的存在的,因为它是麦克斯韦(maxwell)理论的一个预言。而麦克斯韦理论……哦,它在数学上简直完美得像一个奇迹!仿佛是上帝的手写下的一首诗歌。这样的理论,很难想象它是错误的。赫兹吸了一口气,又笑了:不管理论怎样无懈可击,它毕竟还是要通过实验来验证的呀。他站在那里看了一会儿,在心里面又推想了几遍,终于确定自己的实验无误:如果麦克斯韦是对的话,那么在两个铜球之间就应该产生一个振荡的电场,同时引发一个向外传播的电磁波。赫兹转过头去,在实验室的另一边,放着一个开口的铜环,在开口处也各镶了一个小铜球。那是电磁波的接收器,如果麦克斯韦的电磁波真的存在的话,那么它就会穿越这个房间到达另外一端,在接收器那里感生一个振荡的电动势,从而在接收器的开口处也激发出电火花来。

实验室里面静悄悄的,赫兹一动不动地站在那里,仿佛他的眼睛已经看见那无形的电磁波在空间穿越。铜环接受器突然显得有点异样,赫兹简直忍不住要大叫一声,他把自己的鼻子凑到铜环的前面,明明白白地看见似乎有微弱的火花在两个铜球之间的空气里闪烁。赫兹飞快地跑到窗口,把所有的窗帘都拉上,现在更清楚了:淡蓝色的电花在铜环的缺口不断地绽开,而整个铜环却是一个隔离的系统,既没有连接电池也没有任何的能量来源。赫兹注视了足足有一分钟之久,在他眼里,那些蓝色的火花显得如此的美丽。终于他揉了揉眼睛,直起腰来:现在不用再怀疑了,电磁波真真实实地存在于空间之中,正是它激发了接收器上的电火花。他胜利了,成功地解决了这个8年前由柏林普鲁士科学院提出悬赏的问题;同时,麦克斯韦的理论也胜利了,物理学的一个新高峰——电磁理论终于被建立起来。伟大的法拉第(michaelfaraday)为它打下了地基,伟大的麦克斯韦建造了它的主体,而今天,他——伟大的赫兹——为这座大厦封了顶。

赫兹小心地把接受器移到不同的位置,电磁波的表现和理论预测的丝毫不爽。根据实验数据,赫兹得出了电磁波的波长,把它乘以电路的振荡频率,就可以计算出电磁波的前进速度。这个数值精确地等于30万公里/秒,也就是光速。麦克斯韦惊人的预言得到了证实:原来电磁波一点都不神秘,我们平时见到的光就是电磁波的一种,只不过它的频率限定在某一个范围内,而能够为我们所见到罢了。

无论从哪一个意义上来说,这都是一个了不起的发现。古老的光学终于可以被完全包容于新兴的电磁学里面,而“光是电磁波的一种”的论断,也终于为争论已久的光本性的问题下了一个似乎是不可推翻的定论(我们马上就要去看看这场旷日持久的精彩大战)。电磁波的反射、衍射和干涉实验很快就做出来了,这些实验进一步地证实了电磁波和光波的一致性,无疑是电磁理论的一个巨大成就。

赫兹的名字终于可以被闪光地镌刻在科学史的名人堂里,可是,作为一个纯粹的严肃的科学家,赫兹当时却没有想到他的发现里面所蕴藏的巨大的商业意义。在卡尔斯鲁厄大学的那间实验室里,他想的只是如何可以更加靠近大自然的终极奥秘,根本没有料到他的实验会带来一场怎么样的时代革命。赫兹英年早逝,还不到37岁就离开了这个他为之醉心的世界。然而,就在那一年,一位在伦巴底度假的20岁意大利青年读到了他的关于电磁波的论文;两年后,这个青年已经在公开场合进行了无线电的通讯表演,不久他的公司成立,并成功地拿到了专利证。到了1901年,赫兹死后的第7年,无线电报已经可以穿越大西洋,实现两地的实时通讯了。这个来自意大利的年轻人就是古格列尔莫·马可尼(guglielmomarconi),与此同时俄国的波波夫(aleksandrpopov)也在无线通讯领域做了同样的贡献。他们掀起了一场革命的风暴,把整个人类带进了一个崭新的“信息时代”。不知赫兹如果身后有知,又会做何感想?

但仍然觉得赫兹只会对此置之一笑。他是那种纯粹的科学家,把对真理的追求当作人生最大的价值。恐怕就算他想到了电磁波的商业前景,也会不屑去把它付诸实践的吧?也许,在美丽的森林和湖泊间散步,思考自然的终极奥秘,在秋天落叶的校园里,和学生探讨学术问题,这才是他真正的人生吧。今天,他的名字已经成为频率这个物理量的单位,被每个人不断地提起,可是,或许他还会嫌我们打扰他的安宁呢?

上次我们说到,1887年,赫兹的实验证实了电磁波的存在,也证实了光其实是电磁波的一种,两者具有共同的波的特性。这就为光的本性之争画上了一个似乎已经是不可更改的句号。

说到这里,我们的故事要先回一回头,穿越时空去回顾一下有关于光的这场大战。这也许是物理史上持续时间最长,程度最激烈的一场论战。它几乎贯穿于整个现代物理的发展过程中,在历史上烧灼下了永不磨灭的烙印。

光,是每个人见得最多的东西(“见得最多”在这里用得真是一点也不错)。自古以来,它就被理所当然地认为是这个宇宙最原始的事物之一。在远古的神话中,往往是“一道亮光”劈开了混沌和黑暗,于是世界开始了运转。光在人们的心目中,永远代表着生命,活力和希望。在《圣经》里,神要创造世界,首先要创造的就是光,可见它在这个宇宙中所占的独一无二的地位。

可是,光究竟是一种什么东西?或者,它究竟是不是一种“东西”呢?

远古时候的人们似乎是不把光作为一种实在的事物的,光亮与黑暗,在他们看来只是一种环境的不同罢了。只有到了古希腊,科学家们才开始好好地注意起光的问题来。有一样事情是肯定的:我们之所以能够看见东西,那是因为光在其中作用的结果。人们于是猜想,光是一种从我们的眼睛里发射出去的东西,当它到达某样事物的时候,这样事物就被我们所“看见”了。比如恩培多克勒(empedocles)就认为世界是由水、火、气、土四大元素组成的,而人的眼睛是女神阿芙罗狄忒(aphrodite)用火点燃的,当火元素(也就是光。古时候往往光、火不分)从人的眼睛里喷出到达物体时,我们就得以看见事物。

但显而易见,这种解释是不够的。它可以说明为什么我们睁着眼可以看见,而闭上眼睛就不行;但它解释不了为什么在暗的地方,我们即使睁着眼睛也看不见东西。为了解决这个困难,人们引进了复杂得多的假设。比如认为有三种不同的光,分别来源于眼睛,被看到的物体和光源,而视觉是三者综合作用的结果。

这种假设无疑是太复杂了。到了罗马时代,伟大的学者卢克莱修(lucretius)在其不朽著作《物性论》中提出,光是从光源直接到达人的眼睛的,但是他的观点却始终不为人们所接受。对光成像的正确认识直到公元1000年左右才被一个波斯的科学家阿尔·哈桑(al-haytham)所提出:原来我们之所以能够看到物体,只是由于光从物体上反射到我们眼睛里的结果。他提出了许多证据来证明这一点,其中最有力的就是小孔成像的实验,当我们亲眼看到光通过小孔后成了一个倒立的像,我们就无可怀疑这一说法的正确性了。

关于光的一些性质,人们也很早就开始研究了。基于光总是走直线的假定,欧几里德(euclid)在《反射光学》(catoptrica)一书里面就研究了光的反射问题。托勒密(ptolemy)、哈桑和开普勒(johanneskepler)都对光的折射作了研究,而荷兰物理学家斯涅耳(w.snell)则在他们的工作基础上于1621年总结出了光的折射定律。最后,光的种种性质终于被有“业余数学之王”之称的费尔马(pierredefermat)所归结为一个简单的法则,那就是“光总是走最短的路线”。光学终于作为一门物理学科被正式确立起来。

但是,当人们已经对光的种种行为了如指掌的时候,却依然有一个最基本的问题没有得到解决,那就是:“光在本质上到底是一种什么东西?”这个问题看起来似乎并没有那么难回答,但人们大概不会想到,对于这个问题的探究居然会那样地旷日持久,而这一探索的过程,对物理学的影响竟然会是那么地深远和重大,其意义超过当时任何一个人的想象。

古希腊时代的人们总是倾向于把光看成是一种非常细小的粒子流,换句话说光是由一粒粒非常小的“光原子”所组成的。这种观点一方面十分符合当时流行的元素说,另外一方面,当时的人们除了粒子之外对别的物质形式也了解得不是太多。这种理论,我们把它称之为光的“微粒说”。微粒说从直观上看来是很有道理的,首先它就可以很好地解释为什么光总是沿着直线前进,为什么会严格而经典地反射,甚至折射现象也可以由粒子流在不同介质里的速度变化而得到解释。但是粒子说也有一些显而易见的困难:比如人们当时很难说清为什么两道光束相互碰撞的时候不会互相弹开,人们也无法得知,这些细小的光粒子在点上灯火之前是隐藏在何处的,它们的数量是不是可以无限多,等等。

当黑暗的中世纪过去之后,人们对自然世界有了进一步的认识。波动现象被深入地了解和研究,声音是一种波动的认识也逐渐为人们所接受。人们开始怀疑:既然声音是一种波,为什么光不能够也是波呢?十七世纪初,笛卡儿(descartes)在他《方法论》的三个附录之一《折光学》中率先提出了这样的可能:光是一种压力,在媒质里传播。不久后,意大利的一位数学教授格里马第(francescomariagrimaldi)做了一个实验,他让一束光穿过两个小孔后照到暗室里的屏幕上,发现在投影的边缘有一种明暗条纹的图像。格里马第马上联想起了水